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J. Phys: Condens. Mattcr 4 (1992) 5675-5691. Printed in fhe UK 

Momentum space functions for polymers 
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R e o e i i  4 December 1991, in final fonn 24 Fehmary 1992 

Abstract We present an analysis of the basic pmperiies of momentum space tunctions 
for three-dimensional atended systems with Mnslational symmetry in one dimension. 
The implications of the periodic boundary mndilions in position spaa for the momentum 
space functions are carefully discussed. The advantages of applying the full line group 
w m e q  are emphasized. We sues the simplification gained by cartying out symmetric 
orthonormalization in momentum space. Ihe symmetry pmpenies of the momentum 
distribution are discused. 

1. Intduct ion 

Extended organic and inorganic chains represent an increasingly important class of 
materials because of a number of their properties, e.g. transport properties, non- 
Linear optical response, dielectric behaviour and bistability [l-31, which make them 
interesting potential candidates for integration in many devices. Computed molecular 
structures, densities of electronic states, response to electric fields, etc, are usefully 
correlated with experimentally determined properties of existing systems. The success 
of such correlations serves more and more as a basis for quantum-chemistry-aged 
design of new molecular structures with improved properties. Even though the elec- 
tronic properties of a system result from the behaviour of all the electrons (core and 
valence), it is traditionally in terms of the outer electrons that most of the above 
properties are understood. 

Momentum space is genuinely well adapted for the description of the outer elec- 
tronic states. The properties of momentum distributions and to a certain extent also 
momentum space wavefunctions have been studied both experimentally and theoreti- 
cally for small molecules 14-91 and solids 110-221. A number of general theoretical 
papers [23-291 have also appeared, and various aspects of the field have been sur- 
veyed in [8] and in [30-341. As emphasized in a recent paper by Schneider and Bell 
[35] a new experimental technique now makes it possible to determine momentum 
densities in solids directly, thus allowing more precise testing of electronic structure 
calculations. It will be important for theoreticians to be able to extract a maximal 
amount of information from their calculations in order to be ready to meet that 
challenge. 

In the case of polymers, the vely valuable source of useful concepts and/or quan- 
tities that momentum space constitutes for the interpretation of their properties has 
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not yet been fully exploited. One reason for this lack of interest could be the apparent 
insensitivity of the Compton profiles with respect to the structure of the measured 
compounds. However, recent improvements, both experimental and theoretical [36], 
provide new incentives for promoting the use of momentum space concepts in the 
field of polymers. 

The purpose of the present paper is thus to establish a solid conceptual basis 
and a consistent notation for the calculation of momentum space quantities related 
to infinite periodic chains. Polymers have similarities both to solids and to small 
molecules, as well as important differences from them. In order to identify these 
various aspem we have found it useful to study the particular properties of mo- 
mentum qace wavefunciions forpoiymers, as distinguished from both solids and small 
molecules. Therefore, particular attention is devoted to the consequences of both 
the basic periodic boundary conditions and the translational symmetry of the chains 
for the mathematical properties of momentum space Bloch states. A more oomplete 
treatment of the symmetry in polymers requires the concept of line ~ o u p s ,  which are 
used throughout the paper. A line goup  consists of operations under which a one- 
dimensional lattice of three-dimensional objects is invariant. It is consequently the tool 
needed for symmetry adaptation of polymeric wavefunctions. Orthonormalition in 
momentum space is simpler than in position space and, since the symmetry adap- 
cation must be. complemented with orthonormalization, we have devoted a separate 
section to that topic The paper is thus divided into three sections: symmetry aspects 
and boundary conditions for polymer wavefunctions in momentum space (section Z), 
orthogonalization in momentum space (section 3) and momentum distributions for 
polymers (section 4). 

J L Calais et a1 

2. Symmetry and boundary conditions in momentum space 

Symmetry represents one of the most important factors in the treatment of wave- 
functions in position space and that is equally true in momentum space [S, 23-34). 
Point group symmetry in momentum space has been discussed in two recent papers 
[37, 381 and the properties of Bloch and Mnnier functions in momentum space in 
another paper 1391. We start with some general remarks before we proceed to the 
particular aspects of polymers, in this connection viewed as isolated model chains 
of atoms or molecules whose atomic positions can be gencrated through h e  goup 
symmetry operations (40, 411. We wish to stress that this does not mean a restriction 
to one-dimensional systems. The primary structure of a polymer can be described 
as a medimensional lattice of ordinary three-dimensional atoms. By convention, 
the repeat direction is along the z axis in position space, and the corresponding 
reciprocal-space direction will also be the z axis. Figure 1 shows the underlying lin- 
ear one-dimensional lattice of a helical poly(propy1ene) chain, dCH2CH(CH3)],-, 
a being the translational repeat distance of the lattice. In the figure, full circles sum- 
marize the full structure of the translationally repeating pattern, Le. three consecutive 
fragments 4 and B,, which in total corresponds to nine carbon and 18 hydrogen 
atoms. 

The basic connection between a function + ( c )  in position space and its 
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1. 

-re L A schematic view of lhe poly(propylene) S ~ N C ~ U R  and illustralion of the lattice 
parameter used Lo characterize Vanslationally invariant polymers. 

counterpart &p) in momentum space is given by [42] 

&P) = (2x1 -3/2/ d r + ( r )  exp(-ip.r)  

+(r)  = (2a)-3/2 dp&(p) exp(ip.r) .  J 
The transformation of a function + ( T )  in position space under a symmetry operator 
g of p i n t  group type (rotation, reflection or inversion) is described by 

According to (ZI), the momentum space counterpart of the transformed function is 

&(p) = ( Z T ) - ~ / '  

(22) e+(r) = +(g-'r) = 6 . ~ ~ 1 .  

d r  + g ( ~ )  exp(-ip. T )  J 
(2.3) = (Z1r)-3/2 d r + ( g - ' v )  exp(-ip.r) .  J 

After changing the integration variable to T' = g-'r and if g is a unitary group 
operation, we can write (23) as 

&(p)  = (Z7r)3/z/ d d + ( r ' )  exp[-ip* ( g ~ ' ) ]  

= ( 2 n ) 3 / 2 /  dp'@(r') exp[-i(g-'p) .r'] = &(g-'p) = g&(p). (24) 
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Thus for point gmup operations the same rules hold in position and in momentum 
space. 

J L Calais et al 

21. Space grwp operations on momentum space funcfim 

We first briefly recall the action of a space poup operation on a function h momen- 
tum space and use the results as templates for developing the polymer case. Space 
p u p  operations include point group operations and translations, denoted by R and 
T(m), respectively. For a point group operation R we have an expression such as 
(2.2) also in momentum space (cf (2.4)): 

R&P) = &R-'P). (2.5) 

If on the other hand g is a translation T(m), i.e. if 

gr = T(m)r = r + m 

we get 

T(m)$(p) = ( 2 7 ~ ) - ~ / '  (2.7) 

mi., expression represents one of the essential simplilications in momentum space 
compared with position space; a position space translation corresponds to a phase 
factor in momentum space. 

If the system under consideration 'has translational symmetry', ie. if it iS invariant 
under a group of translations that is usually taken to be of b i t e  order by imps- 
ing periodic boundary conditions, the corresponding symmetry-adapted functions are 
Bloch functions + ( k , r )  characterized by a Wavevector E in the first Brillouin zone 
(BZ) [43]. The translation T(m) acting on $(E,r) simply changes the phase of 
the symmetry-adapted function in a way depending on the banslation and on the 
wavevector: 

d r  +(r - t n )  exp(-ip. r )  = &p) exp(-ip. m). J 

T(m)+(k,r)  = +(b,r-m) = ?,b(k,r) e x p ( 4 E . m ) .  (2.8) 

Equation (2.8) is known as the Bloch condition. The similarity between (27) and 
(28) should be noticed but not exaggerated. It is extremely important to distin- 
guish between momentum space with the coordinate p and reciprocal space with the 
wavevector E which is related to a lattice. 

For a general space group operation we use the ordinary expression {Rim} [44] 
to denote the transformation of a vector r to {Rlmlr = Rr + na. For a function h 
position space we then get 

{Rlm)+(r) = +({R-'~-R-'m)r) = + ( R - * ~ - R - ' t r z ) .  (2.9) 

For the transformation of a momentum space function under the same group opera- 
tion we get with (21) 

(27~)-~/ ' /  d+@(R-'r - R-'m) exp(-ip.r)  

= ( 2 7 ~ ) - ~ / '  dr'+(r')  exp[-i(R-'p). r'] exp(-ip. m). (Z 10) I 
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This is a product of a phase factor due to the translational part of the space group 
operation and an integral which is the momentum space counterpart of the original 
function transformed by the point group part of the space group operation. Conse- 
quently the transformed function (29) under a general space group operation {R lm}  
corresponds in momentum space to 

{Rlm)&p) = &R-'p) exp(-ip.m). (211) 

Comparing (29) and (211) we see that the same operator working in position space 
and momentum space, respectively, yields quite different results. When the space 
group elements work in position space, their operation corresponds directly to the 
intuitive meaning of the terms rotation, reflection, inversion, translation and combina- 
tions of these. In momentum space this is no longer true as soon as the space group 
element contains a non-zero translational part Strictly speaking we should therefore 
use different notation for space group operations in position and momentum space, 
in order to stress that an expression such as (211) should be interpreted as that func- 
tion in momentum space which is obtained when the space group operation {Rlm) 
works on the position space function +(r).  With these reservations we shall, however, 
keep the same notation for space group operations whether they work in position or 
momentum space. 

22 Line p u p  operations m momentum space functions 
We are now ready to specialize the above results to polymer chains. As already 
mentioned, in this case we shall need a special type of space group, namely the line 
groups, which characterize the symmetry of a system of three-dimensional objects with 
translational symmetry in one direction only. The line groups have been extensively 
studied in particular by Bozovic ef a1 [a] but also by others [41]. References to 
earlier work can be found in these papers. 

The general line group element is of the form 

where m is an integer restricted to 

- N I 2  6 m < N / 2 .  (2.13) 

"hiis defines the Born-von KArmBn (BK) region of length N u ,  Le. the period asso- 
ciated with the basic periodic boundary conditions along the z axis. The vector t, 
denotes a non-primitive translation associated with the particular point group element 
R. For symmorphic groups, all vectors t ,  vanish. In non-symmorphic line groups the 
translations tR are related to screw axis and glide plane symmetries. 

It is essential to distinguish the BK periodicity which is imposed on the wnve- 
functions from the periodicity of the potenrial which will be introduced later and will 
imply that wavefunctions must satisfy the BIoch condition. The BK region is thus an 
infinite (in the I and y directions) slab of thickness N u .  Rgure 2 illustrates the two 
different concepts of periodicity. 

Thus all functions in position space satisfy 
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Figure 2 Sketch of the differenoe between the BK period which applies to wavefundons 
and the translational repeat of lhe potential which is reflected in the electron density 
distribution funclion. 

The corresponding momentum space functions have continuous arguments p ,  and 
p ,  in the I and the y directions. In the z direction the boundaly condition (214a) 
leads to a discrefization in mmenfum space, which implies that all momentum space 
functions vanish unless [45] 

p ,  = 2 n ~ , , / N a  (2 15) 

where IC,, is any positive or negative integer or zero. In other words the momentum 
space functions &p) are non-vanishing only on those ( p = ,  p,) planes for which (215) 
is satisfied. 

We specialize (211) to a tine group operation of type (212) in order to see how 
a momentum space function for a polymer transforms under such an operation: 

{RltR t m)&) = &R-'P) exp[-ip,(tR t mall. (2 16) 

Combining this expression with (215) we get the following phase factor associated 
with non-vanishing momentum space functions: 

exp[-ip,(tR + ma)] = exp(-2nirc,lR/Na) exp(-2ni~, ,m/N).  (217) 

When the integer IC,, contains a factor N, i.e. nP = N n ,  (2.17) reduces to 

exp( - 2 x i n t R / a ) .  (2.18) 

Thus for a non-symmorphic goup  the line group operation (2.12) entails multiplica- 
tion by a phase factor consisting of two parts. For special values of p ,  corresponding 
to reciprocal-lattice vectors, that phase factor reduces to the complex number (2.18). 
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When N is very large, we can pass from summation to integration over p, by 
means of 

2 Na - Jdp,. 
=. 

Whichever of these operations is simplest can then be used in actual calculations. 
This relation is also connected with the transition from finite to infinite BK regions 
1451. 

If a function +(r )  k normalized in BK, i.e. if 

we have [45] 

for the momentum space counterpart of + ( r )  which b obtained by integration over 
BK. 

For a polymer, translational symmetry is present only along the z axis and, since 
the corresponding reciprocal-space direction is also the z axis, the h-vectors spe- 
cialize m k = ke,, k k i n g  now a wavenumber. Similarly, the notation T(m) for 
translations will be denoted as T,,, for polymer linear lattices. If the polymer is 
invariant under translation, the corresponding symmetry-adapted functions will be 
Bloch functions + ( k , r )  = + ( k , r )  characterized by the wavenumber k in the one- 
dimensional first BZ In this case also, a lattice translation T,,, simply changes the 
phase of the symmetry-adapted function in a way depending on the translation and 
on the wavenumber. The Bloch condition is now restricted to the z direction: 

T , $ ( k , r )  = + ( k , ~ - m )  = + ( k , r )  exp( - ik -m)  = +(k , r )  exp(-imak) 
(222) 

with the wavenumber k in the BZ given by 

k = 2an/Na - N / 2  < K < N / 2  - r / a  < k < r i a .  (223) 

Whenever convenient we shall use the wavenumber k instead of the wavevector 12. 
A Bloch function &k,p)  in momenrum space satisfies both the Bloch condition 

(2.22) and a similar relation with k replaced by p, (cf (2.7)). This implies [39] that 
it vanishes unless the following relation is fulfilled between k and p,, the momentum 
variable along the repeat direction: 

p, = k i- 2?ru/a (224) 

where Y is any positive or negative integer or zero. We thus have K~ = K + N u .  
The two relations, (215) and (224), illustrate in an excellent way how momentum 

space concepts and relations complement results in position space and make their 
implications more visible. All momentum space counterparts of functions satisfying 
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the general BK boundary conditions (2.1Q) vanish unless (2.15) is satisfied. The 
momentum space counterpart of a Bloch function vanishes for most of the values 
satisfying (215) too; it is different from zero only for those values of p ,  which are 
related to the k labelling the Bloch function Via (224). 

The linear lattice in position space allows us to define a reciprocal lattice in the 
same direction: 

K = (2rr/a)ve,  (2.25) 

where Y is any positive or negative integer or zero. The dues  (224) at which a 
Bbch function in momentum space is different from zero can then be written 

J L Calais d a1 

p ,  = k f IC. (226) 

On the other hand there is no reciprocal lattice in the 2: and y directions. 

23. Symmetry-adapted wavq‘unctions 

In a selfconsistent calculation, symmetry adaptation of the basis functions is desirable 
not only in order to simplify the calculations but also to prevent numerical errors from 
yielding unsuitable solutions. Fukutome [46] has shown how the requirement that 
symmetry should also be self-consistent leads to a classification of possible types of 
solutions of Hartree-Fock equations. If on the other hand such symmetry constraints 
are not imposed, so-called symmetry broken solutions may appear [47]. In a restricted 
Hartree-Fock (RHF) caiculation (called the ‘time-reversal-invariant closed shell’ by 
Fukutome) for a closed-shell polymeric system the Fbck-Dirac density matrix contains 
mmplete sets of basis functions for those irreducible representations (IRs) of the 
tine group which occur. Consequently such a Fbck-Dkac matrix as well as the 
corresponding Fock operator commutes with all the elements of the line goup. As a 
result the eigenfunctions of this Fock operator must transform according to IRS of the 
line group and in that sense the symmetry is self-consistent. The direct simplification 
due to the symmetry adaptation consists of the separation of functions associated 
with different IRs. For a line group this means primarily that equations for different 
wavenumbers k can be treated independently of each other at a given iteration stcp. 
AI1 functions are mixed, however, in the Fock-Dim matrix, which is why iterations 
are needed. 

When an atomic orbital 

4 j m ( v )  = + j ( r  - mac,) (227) 

of type j in the unit cell centred at m = mae, is used to construct a function 
symmetry adapted to the translational symmetry, we get a Bloch sum 

. Nf2-1 
I 

q j ( k , v )  = - q5jm(v) exp(ikma). 
fl m=-N/2 

-e j’ means both relative position in the unit cell and type of orbital. The 
counterpart of such a Bloch sum of atomic orbitals in momentum space is Essrntiafly 
given by the momentum space counterpart of the atomic orbital [39]: 

f i j , N ( k , P )  = d m j ( P M p * , k + , Y .  (229) 
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Here the subscript N indicates that this momentum space Bloch function has been 
obtained from integration over BK [39]. Since this is the only type of Bloch function 
that is going to be used, we suppress this subscript from now on. The momentum 
space counterpart of the atomic orbital itself is given by 

J j ( p )  = (2?r)-’” d r  +j(r) exp(- ip-r) .  (230) s 
Apart from indicating the type of atomic orbital the subscript j can thus also denote 
a relative position in the unit cell. In such a case, (230) contains a corresponding 
phase factor. 

The Kronecker 6 in (229) reveals that this is a Bloch function in momentum 
space. The particular type of Bloch function &as it wer-ncentrated in the 
momentum space counterpart (2.30) of the atomic orbital. Here is an interesting 
aspect of momentum space functions associated with translational symmetry, showing 
how information can be represented in a more concentrated manner in momentum 
space. 

According to (216) we get with (227) 

{RttR + n } i r , ( k , p )  = exp[-ip,(tR+ %.)I. (231) 

It is instructive to recall how the same operation transforms the Bloch function in 
position space: 

= qj (Rb,R-’(r - tR) )  exp[-i(Rh). n] .  (232) 

The Kronecker 6 in (231) shows that the transformed Bloch function vanishes unless 

p ,  = (M), t 2rru‘/a. (233) 

For a line group the usual procedure for symmetry adaptation is analogous to what 
is done in the case of ‘ordinary’ space groups [40, 41, 44, 481. One thus chooses a 
wavenumber k and Iinds the group Go( k) of that wavenumber. The m of the line 
group are then obtained for each IC from the I R ~  of G,(k) and the star of k. 

3. Orthogonalization 

In a calculation using symmetry-adapted basis functions, cg. of RHF type, the simpli- 
fication obtained because of symmetry can be described by saying that the symmehy- 
adapted basis is orthogonal und non-interucring with respect to any operator that 
commutes with the elements of the symmetry group. The term non-interacting means 
that withiin that basis all non-diagonal matrix elements of such operators vanish. This 
is the situation for functions associated with different m, but there is no reason for 
functions transforming according to the same IR to be either orthogonal or non- 
interacting with respect to operators commuting with the symmetry group. In such a 
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case, pne must solve a secular equation. The overlap between these functions must be 
handled in one way or another, either by means of an orthonormalization procedure 
or by solving a transformed secular equation. 

We first notice that, for two atomic orbitals (AOS) q5m(r) and &(r)  on a linear 
lattice, the overlap integral can be written in several ways (m = mae,; n = nae,): 

J L Caiais et ai 

For a set of non-orthogona~ orbitals centred on a lattice, vmymmelric wlhogonalizarioq 
[49-51] is the most natural procedure, with among others the property of yielding 
a set of functions which resemble the original ones as much as possible. The fact 
that in momentum space there is only one centre (cf (2.7)) implies that symmetric 
orthonormalization is much simpler in momentum space than in position space [SZ]. 
In position space, symmetric orthonormalization transforms a set of atomic orbitals 
on a lattice, 4 ( m 7 r )  = +m(r), with overlap matrix S, to another set 

ie. a set of multicentre functions. In momentum space the corresponding expression 
is 

+. , (PI  = @ ( P )  exp(-ip,ma) (3.3) 

with 

Here 
N / 2 - 1  

d(p) = d(k + K )  = d(k) = d(k) = S,, exp(-ikma) (3.9 
m=-N/2 

are the eigenvalues of the overlap matrix. Since d ( k )  has the periodicity of the 
reciprocal lattice, there is for every p an equivalent wavevector k in the first B Z  The 
quantity d ( E )  can also he interpreted as the normalization constant for the Bloch 
sum formed from the AOS &(r) or the corresponding function in momentum space. 
Using (3.1) and (3.5) we have, for the unnormalized Bloch sum and its counterpart 
in momentum space, 
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Thus the normalized Bloch function in momentum space is 

fdk,p) = k ' ( k , p ) / m =  f i @ ( ~ ) S ~ , , k + ~ .  0.8) 

With several AOS 4j,,,(r) per unit cell, we first form normalized Bloch sums or their 
counteparts (cf (228)): 

For different k these functions are all orthonormal and non-interacting. Functions 
with the Same k and different subscripn j are in general not orthogonal, however: 

, / d p k f ( k p ) k j ( k , p )  = d;j(k). (3.10) 

We can again carry out a symmetric orthonormalization in order to obtain a set of 
completeiy ofihononnal functions: 

Here 

(3.12) 

L ... ... ... ... J 

is the overlap matrix of the Bloch functions (3.9) for a fixed k. We see that, although 
the functions (3.11) are orthonormal, there is no reason for them to be non-interacting 
with respect to a Fock operator. 

As shown in this section, symmetric orthonormalization in momentum space is a 
very attractive procedure, which makes it possible to concentrate on the properties 
of the atomic orbitals. This ought to be useful in calculations carried out directly in 
momentum space. 

4. Momentum distributions 

The momentum distribution for an electronic system is given by the diagonal element 
of the lirst-order density matrix 6 ( p ,  C; p', c'), in momentum space, which depends on 
both the momentum coordinates p,  p' and the spin coordinates C, C'. In the general 
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case that quantity consists of a numberdensiiy matrix N(p,p') and a spin-density 
matrix vector S(p,p')  = e,S,(p,p') + e ,Sy(p ,p ' )  + e ,S , (p ,p ' )  [53]: 

J L Calair d al 

&(p,C;p',C') = [a(C),P(C)I 

(4.1) 

When the spin-density matrix vanishes, we have 

&P,C;P',C') = i N p , p ' ) ( a "  t PP'). 

P(P) = N(P,P).  (4.3) 

( 4 4  

The momentum distribution is then given by 

The Same expression for the momentum distribution is obtained in the general case, 
and thus with a non-vanishing spin density, from 

(4.4) 

The spin density consists of the three components 

S , ( P )  = .%(P,P) S , ( P )  = S y ( P , P )  S A P )  = S A P , P ) .  (4.5) 

Both (4.4) and (4.5) are accessible experimentally [%, 541. 
The various components of the first-order density matrix (4.1) can be expressed 

in terms of the natural spin orbitals and the occupation function [53] for the state 
under consideration. Closely related to the natural orbitals are the so-called genera- 
lized overlap amplitudes (GOAS), which provide an example of still another quantity 
available experimentally. The absolute values of the momentum space counterparts 
of the GOAS are in fact measured in ( e , 2 e )  experiments [54]. 

4.1. S)m"mtty properties of momentum dirttiburions 

If the total wavefunction is approximated by a single determinant, the occupation 
function is a step function. Even with this limitation it is possible, however, to 
conceive of a wealth of determinants of different kinds [46, 551. If we further restrict 
ourselves to what is usually called the RHF approximation, all the occupied orbitals 
are doubly filled and can be chosen real [46], which implies that 

A.(p ,p ' )  = N(-p,-p') .  (4.6) 

It is practical to let the term RHF include one more condition, namely that the 
number-density matrix N ( T , ~ ' )  is invariant under those unitary operators g which 
constitute the spatial symmetry group G of the system. In such a case we have 

gN(T,r')g+ = N(g-'+,g-'r') = N(T,r') (4.7) 
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gN(r,r') = N(r,r')g. (4.8) 
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or, expressed in a slightly different way, 

Here operators to the right of the density matrix thus work on the primed coordinates. 
For the electronic density p ( r )  = N(T,T) this implies that 

gdr) = .dg-'T) = p ( r )  (4.9) 

which is what should be expected for 'normal' systems. 
In order to see what this means for the numberdensity matrix in momentum space 

we introduce symmetry-adapted orbitals +jO)(r) for the system under consideration- 
atom, molecule, polymer or solid-assumed to be invariant under the group G. Such 
orbitals are characterized by the relations 

gll,!")(v) = E$?)(r )r$) (g)  g E G , j = 1,2 ,3 , .  . . ,l,. (4.10) 

Here I ,  is the dimension of an IR r(") of G, and I$)(g) is the i j th  element of 
the matt% representing g in that IR. The restrictions associated with the term RHF 
now mean that the number-density matrix contains compkfe se& of partners of each 
IR which is occupied 

1, 

i d  

oce I ,  

OI j=1 
N(r,r') = +;-)(r)+y)'(r'). (4.11) 

Thus, if the IR r(") is present in the sum (4.11), aU the 1, functions $ y ) ( r )  must be 
included in that sum, in order for it to represent an RHF number-density matrix. The 
summation over a includes the possibility that an IR can appear more than once. In 
such a case we assume that the corresponding orbitals have been orthonormalized. 
Otherwise a more general form of the first-order density matrix must be used [56]. 
Combining (4.10) and (4.11) we see that (4.7) is satisfied. 

The momentum space counterpart of .c;'"'(r) is 

.i,!"'(p) = (27r)- ' / ' /  d r + y ) ( r )  e x p ( - i p . r ) .  (4.12) 

When + p ) ( r )  is symmetry adapted in the sense of (4.10), so is Gp)(p). Conse- 
quently we also have 

LlN(Y,P') = N(P,P')g (4.13) 

and for the momentum distribution (4.3) 

SB(P) = B(g-'P) = B b ) .  
If G is a line group, we have from (2.16) 

(4.14) 

{Rlh  t ml @)(P) = Gp)(g-'p) exp[-ip,(tR t m a ) ]  (4.15) 
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which means that 
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{ R l t ~  t m )  N(P,P') {RltR t = RN(p,p')RC. (4.16) 

This implies that symmetry adaptarion of the momentum distribution primarily means 
that the momentum distribution is invariant under the point group pan of the line 
group. The translational symmetry shows up in another way in momentum space, 
however. In order to see how, we must specify the meaning of the superscript 01 for 
a line group. 

The IRS of a tine group are primarily characterized by the wavenumber k (equation 
(2.23)) in the B Z  For a given k they are further specified by a particular 1R of G,(k),  
the group of that particular k. We therefore replace the general notation used so far 
(cf (4.10)) by $j ." ) (k , r ) ,  where now a refers to an 1R of G,(k). The numberdensity 
matrix can then be written 

OEE 1. 

k , a  j = 1  
N(P,P') = @ ) ( k , p ) @ ) ' ( k , p ' )  (4.17) 

and we note that the summation mer k includes both +k  and -k. 

as linear combinations of Aos 
When the Bloch functions-the final solutions of the RHF problem-are expressed 

$ ! - ) ( k , ~ )  = $ z ) ( k , r ) c P ( k )  
P 

their momentum space counterparts can be written as (cf (2.28) and (2.29)) 

$;-)(lu,P) = f i $ ) (hP)CP(k ) .  
P 

(4.180) 

(4.186) 

The basis functions are thus of type (229) and symmetry adapted to the qoup ofthe 
wavenumber k: 

Thus there is an important distinction between the basis functions in (4.18a) that 
are symmetry adapted to the full line group, and those used in momentum space, 
(4.18b), which are symmetry adapted to the group of the particular wavevector k. By 
combining (4.16)-(4.19) we can make the point group symmetry of the momentum 
distribution clearly visible. Care is needed however, since the I R ~  I'(Q) of G,(k) 
depend on k. 

It is reasonable to ask whether it is possible to see from any features of the 
function (4.3) if it is the momentum distribution of a polymer or of some other 
system. In the polymer case we have drawn attention to some of these features in 
the present paper. The special role of the z axis reveals the existence of a lattice in 
that direction. The contents of each unit cell are reflected in the composition of the 
momentum distribution from contributions that are symmetry adapted to the point 
group part of the line group and its subgroups. 
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4.2 Form faclors 

In studies of the electron density p(+ )  = N(+,r) ,  the form fuctor 

F ( p )  = 1 d r  p(+)  e x p ( - i p .  +) 

which can also be written as 

F(P) = 

plays an essential role. 

dp' N(P' + P,P') 

Similarly it ici customary [57-60] to use the reciprocal form factor 

(4.20) 

(4.21) 

W+) = 1 dpB(p)  e x p b .  +) (4.22) 

in analyses of momentum space experiments. Combining (4.3). (4.22) and the basic 
connection between momentum space and position space, we get 

B ( T )  = dr'N(+'+r,+)  (4.23) J 
which allows us to interpret the reciprocal form factor as the autocorrelation function 
of the numberdensity matrix in position space. 

When the momentum distribution is invariant under the point group part of the 
line group (cf (4.14) and (4.16)), (4.22) implies that this also holds for the reciprocal 
form factor 

RB(+) = / d p b ( p )  exp[ip- ( W ' r ) ]  = B(+) .  (4.24) 

Thus the reciprocal form factor B ( T )  reflects the symmetry of the point group part 
of the line group. 

5. Concluding remarks 

In this paper we have analysed in some detail the properties of momentum space 
functions for a polymer from the point of view of boundary conditions, symmetry 
and orthogonalization. The differences in the implications of the periodic boundary 
conditions on the one hand and the translational symmetry on the other hand have 
been stressed. The advantages in using the full line group symmetry are emphasized. 
The results of the present paper should be useful for all momentum space applications 
to polymers and will hopefully lead to an increased interest in this important aspect 
of the electronic structure of such systems. 
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